

An Investigation of 2 m Temperature Biases and their Evaluation in GMAO's GEOS-5 Systems

Allie Marquardt Collow

Mike Bosilovich, Richard Cullather, Randy Koster, Gary Partyka, Siegfried Schubert, and Max Suarez

NASA GSFC, Code 610.1

Outline

- Overview of 2 m temperature (T2M) biases in GEOS systems over land
- Summertime warm bias and observation corrected precipitation
- Wintertime cool bias
 - Snow
 - Desert (West Africa)
- Efforts from the modeling team
 - Ground heating
 - Radiation scheme

GEOS-5 Generally Produces Reliable 2 m Temperatures

- However there are consistent biases across GEOS configurations
 - Diurnal
 - Seasonal
 - Regional/Land cover
- That can have implications on
 - Energy budget
 - Numerical weather prediction

Time series of annual average temperature over land (Provided by Clara Draper)

GMAO Focused Evaluation of T2M

 T2M is an interpolation between surface temperature and temperature at the lowest model level

Sfc ΔT = Qnet – Sensible Heat Flx – Latent Heat Flx + Ground Heat Flow

Qnet = (Downwelling SW + Upwelling SW (albedo)) + (Downwelling LW – Upwelling LW)

Substituting the GEOS-5 expressions for each of these fields gives: Sfc DeltaT = (swgdn + (swgdn – swgnt)) + (lwgdn – (lwgdn – lwgnt)) hflux – eflux + ghland

Global Temperature Bias of MERRA-2 Relative to ERA-I

- •Seasonal average from 1980-2015
 - •ERA-I analyzes 2 m temperature
- •lgnore Antarctica -> ERA-l is too warm
- Noticeable cold bias in Northern
 Hemisphere midlatitudes during DJF

Observation Corrected Precipitation Helped in MERRA-2

...but is not used in FP or FPIT

- •Seasonal average for 2000-2015
- Warm bias in central Africa, South America (Argentina)
- •Cold bias in Brazil during JJA

Model Biases with Respect to an AMIP Ensemble

- •An energy budget analysis revealed
 - DJF -> surface downwelling LW
 - •JJA -> surface downwelling LW + balance between LH and SH

Cool Bias over Snow: T2M Capped at 0 °C

0.9

0.8

0.70.60.5

0.4

0.30.20.1

3 Hourly 2 m Temperature

Wintertime Cool Bias in West Africa

BSRN station no: 42; Surface type: desert, rock; Topography type: flat, rural;

- •Consistent cold bias in daily mean and throughout diurnal cycle
- •Largest bias at 18z
- 2K difference in diurnal amplitude
- •A back of the envelope calculation using the Stefan-Boltzmann law indicates we are looking for ~30 W m⁻² difference in the energy budget for a 4 K bias

30

December 2016

20

10

UTC

Downwelling LW Radiation in Algeria

- Mix of clear and cloudy (spikes) conditions
- •Consistent bias of ~20 W m⁻²
- •SW radiation is okay!

Does this hold for the rest of West Africa?

*GEOS-5 temperature and humidity profiles, and well as skin temperature are used to produce CERES EBAF!

Cloud Fraction

Efforts from the Modeling Team at **GMAO:** Ground Heating

Mean diurnal cycle of 2 m temperature in November for 6 desert points

•Each cycle built from 7 Novembers within AMIP runs

Red: Land surface model with various modifications, particularly an increase in the heat capacity associated with the "skin" temperature.

Black: Control land surface model

Efforts from the Modeling Team at GMAO: Radiation Transfer

- •Current radiation scheme is Chou-Suarez
- Moving towards RRTM-G
- •RRTM-G SW currently implemented in EMIP test cases
- •Very much a work in progress

Comparison of 2 m temperature in MERRA-2 and an EMIP with RRTM-G SW

Thanks!

Take Home Messages:

- We have a focus team that has been working to diagnose biases in 2 m temperature
- Attention has been given to the cold bias over desert areas, particularly West Africa
- Not enough surface downwelling LW radiation
- Increasing the heat capacity of the surface seems to have helped with the diurnal amplitude in temperature
- Ongoing efforts include a fix for the near surface temperature over snow and implementing RRTM-G

